
dynamic-programming

#dynamic-

programmin

g

Table of Contents

About 1

Chapter 1: Getting started with dynamic-programming 2

Remarks 2

Examples 2

Introduction To Dynamic Programming 2

Understanding State in Dynamic Programming 4

Constructing a DP Solution 6

Chapter 2: Coin Changing Problem 11

Examples 11

Number of Ways to Get Total 11

Minimum Number of Coins to Get Total 12

Chapter 3: Dynamic Time Warping 16

Examples 16

Introduction To Dynamic Time Warping 16

Chapter 4: Knapsack Problem 20

Remarks 20

Examples 20

0-1 Knapsack Problem 20

Chapter 5: Matrix Chain Multiplication 25

Examples 25

Recursive Solution 25

Chapter 6: Rod Cutting 28

Examples 28

Cutting the Rod to get the maximum profit 28

Chapter 7: Solving Graph Problems Using Dynamic Programming 31

Examples 31

Floyd-Warshall Algorithm 31

Minimum Vertex Cover 33

Chapter 8: Subsequence Related Algorithms 38

Examples 38

Longest Common Subsequence 38

Longest Increasing Subsequence 42

Longest Palindromic Subsequence 46

Chapter 9: Weighted Activity Selection 49

Examples 49

Weighted Job Scheduling Algorithm 49

Credits 54

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: dynamic-programming

It is an unofficial and free dynamic-programming ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official dynamic-
programming.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/dynamic-programming
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with dynamic-
programming

Remarks

This section provides an overview of what dynamic-programming is, and why a developer might
want to use it.

It should also mention any large subjects within dynamic-programming, and link out to the related
topics. Since the Documentation for dynamic-programming is new, you may need to create initial
versions of those related topics.

Examples

Introduction To Dynamic Programming

Dynamic programming solves problems by combining the solutions to subproblems. It can be
analogous to divide-and-conquer method, where problem is partitioned into disjoint subproblems,
subproblems are recursively solved and then combined to find the solution of the original problem.
In contrast, dynamic programming applies when the subproblems overlap - that is, when
subproblems share subsubproblems. In this context, a divide-and-conquer algorithm does more
work than necessary, repeatedly solving the common subsubproblems. A dynamic-programming
algorithm solves each subsubproblem just once and then saves its answer in a table, thereby
avoiding the work of recomputing the answer every time it solves each subsubproblems.

Let's look at an example. Italian Mathematician Leonardo Pisano Bigollo, whom we commonly
know as Fibonacci, discovered a number series by considering the idealized growth of rabbit
population. The series is:

1, 1, 2, 3, 5, 8, 13, 21,

We can notice that every number after the first two is the sum of the two preceding numbers. Now,
let's formulate a function F(n) that will return us the nth Fibonacci number, that means,

F(n) = nth Fibonacci Number

So far, we've known that,

F(1) = 1
F(2) = 1
F(3) = F(2) + F(1) = 2
F(4) = F(3) + F(2) = 3

We can generalize it by:

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Fibonacci
https://en.wikipedia.org/wiki/Fibonacci_number#Origins
https://en.wikipedia.org/wiki/Fibonacci_number#Origins

F(1) = 1
F(2) = 1
F(n) = F(n-1) + F(n-2)

Now if we want to write it as a recursive function, we have F(1) and F(2) as our base case. So our
Fibonacci Function would be:

Procedure F(n): //A function to return nth Fibonacci Number
if n is equal to 1
 Return 1
else if n is equal to 2
 Return 1
end if
Return F(n-1) + F(n-2)

Now if we call F(6), it will call F(5) and F(4), which will call some more. Let's represent this
graphically:

From the picture, we can see that F(6) will call F(5) and F(4). Now F(5) will call F(4) and F(3). After
calculating F(5), we can surely say that all the functions that were called by F(5) has been already
calculated. That means, we have already calculated F(4). But we are again calculating F(4) as
F(6)'s right child indicates. Do we really need to recalculate? What we can do is, once we have
calculated the value of F(4), we'll store it in an array named dp, and will reuse it when needed.
We'll initialize our dp array with -1(or any value that won't come in our calculation). Then we'll call
F(6) where our modified F(n) will look like:

Procedure F(n):
if n is equal to 1
 Return 1
else if n is equal to 2
 Return 1
else if dp[n] is not equal to -1 //That means we have already calculated dp[n]
 Return dp[n]
else
 dp[n] = F(n-1) + F(n-2)
 Return dp[n]
end if

https://riptutorial.com/ 3

https://i.stack.imgur.com/ngSbS.jpg

We've done the same task as before, but with a simple optimization. That is, we've used
memoization technique. At first, all the values of dp array will be -1. When F(4) is called, we check
if it is empty or not. If it stores -1, we will calculate its value and store it in dp[4]. If it stores
anything but -1, that means we've already calculated its value. So we'll simply return the value.

This simple optimization using memoization is called Dynamic Programming.

A problem can be solved using Dynamic Programming if it has some characteristics. These are:

Subproblems:
A DP problem can be divided into one or more subproblems. For example: F(4) can be
divided into smaller subproblems F(3) and F(2). As the subproblems are similar to our main
problem, these can be solved using same technique.

•

Overlapping Subproblems:
A DP problem must have overlapping subproblems. That means there must be some
common part for which same function is called more than once. For example: F(5) and F(6)
has F(3) and F(4) in common. This is the reason we stored the values in our array.

•

Optimal Substructure:
Let's say you are asked to minimize the function g(x). You know that the value of g(x)
depends on g(y) and g(z). Now if we can minimize g(x) by minimizing both g(y) and g(z),
only then we can say that the problem has optimal substructure. If g(x) is minimized by only
minimizing g(y) and if minimizing or maximizing g(z) doesn't have any effect on g(x), then
this problem doesn't have optimal substructure. In simple words, if optimal solution of a
problem can be found from the optimal solution of its subproblem, then we can say the
problem has optimal substructure property.

•

Understanding State in Dynamic Programming

https://riptutorial.com/ 4

https://en.wikipedia.org/wiki/Memoization
https://i.stack.imgur.com/7OVJm.jpg

Let's discuss with an example. From n items, in how many ways you can choose r items? You

know it is denoted by . Now think of a single item.

If you don't select the item, after that you have to take r items from remaining n-1 items,

which is given by .

•

If you select the item, after that you have to take r-1 items from remaining n-1 items, which is

given by .

•

The summation of these two gives us the total number of ways. That is:

If we think nCr(n,r) as a function that takes n and r as parameter and determines , we can
write the relation mentioned above as:

nCr(n,r) = nCr(n-1,r) + nCr(n-1,r-1)

This is a recursive relation. To terminate it, we need to determine base case(s). We know that,

 and . Using these two as base cases, our algorithm to determine will be:

Procedure nCr(n, r):
if r is equal to 1
 Return n
else if n is equal to r
 Return 1
end if
Return nCr(n-1,r) + nCr(n-1,r-1)

If we look at the procedure graphically, we can see some recursions are called more than once.
For example: if we take n = 8 and r = 5, we get:

https://riptutorial.com/ 5

https://i.stack.imgur.com/WDYXl.png
https://i.stack.imgur.com/UnhcW.png
https://i.stack.imgur.com/TfAm6.png
https://i.stack.imgur.com/2ayHg.png
https://i.stack.imgur.com/WDYXl.png
https://i.stack.imgur.com/r1oSW.png
https://i.stack.imgur.com/af8ba.png
https://i.stack.imgur.com/WDYXl.png
https://i.stack.imgur.com/DQatV.jpg

We can avoid this repeated call by using an array, dp. Since there are 2 parameters, we'll need a
2D array. We'll initialize the dp array with -1, where -1 denotes the value hasn't been calculated
yet. Our procedure will be:

Procedure nCr(n,r):
if r is equal to 1
 Return n
else if n is equal to r
 Return 1
else if dp[n][r] is not equal to -1 //The value has been calculated
 Return dp[n][r]
end if
dp[n][r] := nCr(n-1,r) + nCr(n-1,r-1)
Return dp[n][r]

To determine , we needed two parameters n and r. These parameters are called state. We
can simply deduce that the number of states determine the number of dimension of the dp array.
The size of the array will change according to our need. Our dynamic programming algorithms will
maintain the following general pattern:

Procedure DP-Function(state_1, state_2,, state_n)
Return if reached any base case
Check array and Return if the value is already calculated.
Calculate the value recursively for this state
Save the value in the table and Return

Determining state is one of the most crucial part of dynamic programming. It consists of the
number of parameters that define our problem and optimizing their calculation, we can optimize
the whole problem.

Constructing a DP Solution

No matter how many problems you solve using dynamic programming(DP), it can still surprise
you. But as everything else in life, practice makes you better. Keeping these in mind, we'll look at
the process of constructing a solution for DP problems. Other examples on this topic will help you
understand what DP is and how it works. In this example, we'll try to understand how to come up
with a DP solution from scratch.

Iterative VS Recursive:
There are two techniques of constructing DP solution. They are:

Iterative (using for-cycles)•
Recursive (using recursion)•

For example, algorithm for calculating the length of the Longest Common Subsequence of two
strings s1 and s2 would look like:

Procedure LCSlength(s1, s2):
Table[0][0] = 0
for i from 1 to s1.length
 Table[0][i] = 0

https://riptutorial.com/ 6

https://i.stack.imgur.com/WDYXl.png
http://www.riptutorial.com/dynamic-programming/example/25782/longest-common-subsequence

endfor
for i from 1 to s2.length
 Table[i][0] = 0
endfor
for i from 1 to s2.length
 for j from 1 to s1.length
 if s2[i] equals to s1[j]
 Table[i][j] = Table[i-1][j-1] + 1
 else
 Table[i][j] = max(Table[i-1][j], Table[i][j-1])
 endif
 endfor
endfor
Return Table[s2.length][s1.length]

This is an iterative solution. There are a few reasons why it is coded in this way:

Iteration is faster than recursion.•
Determining time and space complexity is easier.•
Source code is short and clean•

Looking at the source code, you can easily understand how and why it works, but it is difficult to
understand how to come up with this solution. However the two approaches mentioned above
translates into two different pseudo-codes. One uses iteration(Bottom-Up) and another uses
recursion(Top-Down) approach. The latter one is also known as memoization technique. However,
the two solutions are more or less equivalent and one can be easily transformed into another. For
this example, we'll show how to come up with a recursive solution for a problem.

Example Problem:
Let's say, you have N (1, 2, 3,, N) wines placed next to each other on a shelf. The price of ith
wine is p[i]. The price of the wines increase every year. Suppose this is year 1, on year y the price
of the ith wine will be: year * price of the wine = y*p[i]. You want to sell the wines you have, but
you have to sell exactly one wine per year, starting from this year. Again, on each year, you are
allowed to sell only the leftmost or the rightmost wine and you can't rearrange the wines, that
means they must stay in same order as they are in the beginning.

For example: let's say you have 4 wines in the shelf, and their prices are(from left to right):

+---+---+---+---+
| 1 | 4 | 2 | 3 |
+---+---+---+---+

The optimal solution would be to sell the wines in the order 1 -> 4 -> 3 -> 2, which will give us a

total profit of:

Greedy Approach:
After brainstorming for a while, you might come up with the solution to sell the expensive wine as
late as possible. So your greedy strategy will be:

Every year, sell the cheaper of the two (leftmost and rightmost) available wines.

https://riptutorial.com/ 7

https://i.stack.imgur.com/4QXSS.png

Although the strategy doesn't mention what to do when the two wines cost the same, the strategy
kinda feels right. But unfortunately, it isn't. If the prices of the wines are:

+---+---+---+---+---+
| 2 | 3 | 5 | 1 | 4 |
+---+---+---+---+---+

The greedy strategy would sell them in the order 1 -> 2 -> 5 -> 4 -> 3 for a total profit of:

But we can do better if we sell the wines in the order 1 -> 5 -> 4 -> 2 -> 3 for a total profit of:

This example should convince you that the problem is not so easy as it looks on the first sight. But
it can be solved using Dynamic Programming.

Backtracking:
To come up with the memoization solution for a problem finding a backtrack solution comes
handy. Backtrack solution evaluates all the valid answers for the problem and chooses the best
one. For most of the problems it is easier to come up with such solution. There can be three
strategies to follow in approaching a backtrack solution:

it should be a function that calculates the answer using recursion.1.
it should return the answer with return statement.2.
all the non-local variables should be used as read-only, i.e. the function can modify only local
variables and its arguments.

3.

For our example problem, we'll try to sell the leftmost or rightmost wine and recursively calculate
the answer and return the better one. The backtrack solution would look like:

// year represents the current year
// [begin, end] represents the interval of the unsold wines on the shelf
Procedure profitDetermination(year, begin, end):
if begin > end //there are no more wines left on the shelf
 Return 0
Return max(profitDetermination(year+1, begin+1, end) + year * p[begin], //selling the leftmost
item
 profitDetermination(year+1, begin, end+1) + year * p[end]) //selling the
rightmost item

If we call the procedure using profitDetermination(1, 0, n-1), where n is the total number of
wines, it will return the answer.

This solution simply tries all the possible valid combinations of selling the wines. If there are n

wines in the beginning, it will check possibilities. Even though we get the correct answer now,
the time complexity of the algorithm grows exponentially.

The correctly written backtrack function should always represent an answer to a well-stated
question. In our example, the procedure profitDetermination represents an answer to the question:
What is the best profit we can get from selling the wines with prices stored in the array p, when the
current year is year and the interval of unsold wines spans through [begin, end], inclusive? You

https://riptutorial.com/ 8

https://i.stack.imgur.com/VSftx.png
https://i.stack.imgur.com/BAecO.png
https://i.stack.imgur.com/R8ime.png

should always try to create such a question for your backtrack function to see if you got it right and
understand exactly what it does.

Determining State:
State is the number of parameters used in DP solution. In this step, we need to think about which
of the arguments you pass to the function are redundant, i.e. we can construct them from the other
arguments or we don't need them at all. If there are any such arguments, we don't need to pass
them to the function, we'll calculate them inside the function.

In the example function profitDetermination shown above, the argument year is redundant. It is
equivalent to the number of wines we have already sold plus one. It can be determined using the
total number of wines from the beginning minus the number of wines we have not sold plus one. If
we store the total number of wines n as a global variable, we can rewrite the function as:

Procedure profitDetermination(begin, end):
if begin > end
 Return 0
year := n - (end-begin+1) + 1 //as described above
Return max(profitDetermination(begin+1, end) + year * p[begin],
 profitDetermination(begin, end+1) + year * p[end])

We also need to think about the range of possible values of the parameters can get from a valid
input. In our example, each of the parameters begin and end can contain values from 0 to n-1. In a
valid input, we'll also expect begin <= end + 1. There can be O(n²) different arguments our function
can be called with.

Memoization:

We are now almost done. To transform the backtrack solution with time complexity into

memoization solution with time complexity , we will use a little trick which doesn't require
much effort.

As noted above, there are only different parameters our function can be called with. In

other words, there are only different things we can actually compute. So where does
time complexity come from and what does it compute!!

The answer is: the exponential time complexity comes from the repeated recursion and because
of that, it computes the same values again and again. If you run the code mentioned above for an
arbitrary array of n = 20 wines and calculate how many times was the function called for
arguments begin = 10 and end = 10, you will get a number 92378. That is a huge waste of time to
compute the same answer that many times. What we could do to improve this is to store the
values once we have computed them and every time the function asks for an already calculated
value, we don't need to run the whole recursion again. We'll have an array dp[N][N], initialize it
with -1 (or any value that will not come in our calculation), where -1 denotes the value hasn't yet
been calculated. The size of the array is determined by the maximum possible value of begin and
end as we'll store the corresponding values of certain begin and end values in our array. Our
procedure would look like:

https://riptutorial.com/ 9

https://i.stack.imgur.com/sbk1b.png
https://i.stack.imgur.com/GpKoh.png
https://i.stack.imgur.com/GpKoh.png
https://i.stack.imgur.com/GpKoh.png
https://i.stack.imgur.com/sbk1b.png

Procedure profitDetermination(begin, end):
if begin > end
 Return 0
if dp[begin][end] is not equal to -1 //Already calculated
 Return dp[begin][end]
year := n - (end-begin+1) + 1
dp[begin][end] := max(profitDetermination(year+1, begin+1, end) + year * p[begin],
 profitDetermination(year+1, begin, end+1) + year * p[end])
Return dp[begin][end]

This is our required DP solution. With our very simple trick, the solution runs time, because

there are different parameters our function can be called with and for each of them, the

function runs only once with complexity.

Summery:
If you can identify a problem that can be solved using DP, use the following steps to construct a
DP solution:

Create a backtrack function to provide the correct answer.•
Remove the redundant arguments.•
Estimate and minimize the maximum range of possible values of function parameters.•
Try to optimize the time complexity of one function call.•
Store the values so that you don't have to calculate it twice.•

The complexity of a DP solution is: range of possible values the function can be called with *
time complexity of each call.

Read Getting started with dynamic-programming online: https://riptutorial.com/dynamic-
programming/topic/7946/getting-started-with-dynamic-programming

https://riptutorial.com/ 10

https://i.stack.imgur.com/GpKoh.png
https://i.stack.imgur.com/GpKoh.png
https://i.stack.imgur.com/ZiTVI.png
https://riptutorial.com/dynamic-programming/topic/7946/getting-started-with-dynamic-programming
https://riptutorial.com/dynamic-programming/topic/7946/getting-started-with-dynamic-programming

Chapter 2: Coin Changing Problem

Examples

Number of Ways to Get Total

Given coins of different denominations and a total, in how many ways can we combine these coins
to get the total? Let's say we have coins = {1, 2, 3} and a total = 5, we can get the total in 5
ways:

1 1 1 1 1•
1 1 1 2•
1 1 3•
1 2 2•
2 3•

The problem is closely related to knapsack problem. The only difference is we have unlimited
supply of coins. We're going to use dynamic programming to solve this problem.

We'll use a 2D array dp[n][total + 1] where n is the number of different denominations of coins
that we have. For our example, we'll need dp[3][6]. Here dp[i][j] will denote the number of ways
we can get j if we had coins from coins[0] up to coins[i]. For example dp[1][2] will store if we had
coins[0] and coins[1], in how many ways we could make 2. Let's begin:

For dp[0][0], we are asking ourselves if we had only 1 denomination of coin, that is coins[0] = 1,
in how many ways can we get 0? The answer is 1 way, which is if we don't take any coin at all.
Moving on, dp[0][1] will represent if we had only coins[0], in how many ways can we get 1? The
answer is again 1. In the same way, dp[0][2], dp[0][3], dp[0][4], dp[0][5] will be 1. Our array will
look like:

 +---+---+---+---+---+---+---+
(den)| | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (1) | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +---+---+---+---+---+---+---+
 (2) | 1 | | | | | | |
 +---+---+---+---+---+---+---+
 (3) | 2 | | | | | | |
 +---+---+---+---+---+---+---+

For dp[1][0], we are asking ourselves if we had coins of 2 denominations, that is if we had
coins[0] = 1 and coins[1] = 2, in how many ways we could make 0? The answer is 1, which is by
taking no coins at all. For dp[1][1], since coins[1] = 2 is greater than our current total, 2 will not
contribute to getting the total. So we'll exclude 2 and count number of ways we can get the total
using coins[0]. But this value is already stored in dp[0][1]! So we'll take the value from the top.
Our first formula:

https://riptutorial.com/ 11

if coins[i] > j
 dp[i][j] := dp[i-1][j]
end if

For dp[1][2], in how many ways can we get 2, if we had coins of denomination 1 and 2? We can
make 2 using coins of denomination of 1, which is represented by dp[0][2], again we can take 1
denomination of 2 which is stored in dp[1][2-coins[i]], where i = 1. Why? It'll be apparent if we
look at the next example. For dp[1][3], in how many ways can we get 3, if we had coins of
denomination 1 and 2? We can make 3 using coins of denomination 1 in 1 way, which is stored in
dp[0][3]. Now if we take 1 denomination of 2, we'll need 3 - 2 = 1 to get the total. The number of
ways to get 1 using the coins of denomination 1 and 2 is stored in dp[1][1], which can be written
as, dp[i][j-coins[i]], where i = 1. This is why we wrote the previous value in this way. Our second
and final formula will be:

if coins[i] <= j
 dp[i][j] := dp[i-1][j] + dp[i][j-coins[i]]
end if

This is the two required formulae to fill up the whole dp array. After filling up the array will look like:

 +---+---+---+---+---+---+---+
(den)| | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (1) | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +---+---+---+---+---+---+---+
 (2) | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
 +---+---+---+---+---+---+---+
 (3) | 2 | 1 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+

dp[2][5] will contain our required answer. The algorithm:

Procedure CoinChange(coins, total):
n := coins.length
dp[n][total + 1]
for i from 0 to n
 dp[i][0] := 1
end for
for i from 0 to n
 for j from 1 to (total + 1)
 if coins[i] > j
 dp[i][j] := dp[i-1][j]
 else
 dp[i][j] := dp[i-1][j] + dp[i][j-coins[i]]
 end if
 end for
end for
Return dp[n-1][total]

The time complexity of this algorithm is O(n * total), where n is the number of denominations of
coins we have.

Minimum Number of Coins to Get Total

https://riptutorial.com/ 12

Given coins of different denominations and a total, how many coins do we need to combine to get
the total if we use minimum number of coins? Let's say we have coins = {1, 5, 6, 8} and a total
= 11, we can get the total using 2 coins which is {5, 6}. This is indeed the minimum number of
coins required to get 11. We'll also assume that there are unlimited supply of coins. We're going to
use dynamic programming to solve this problem.

We'll use a 2D array dp[n][total + 1] where n is the number of different denominations of coins
that we have. For our example, we'll need dp[4][12]. Here dp[i][j] will denote the minimum
number of coins needed to get j if we had coins from coins[0] up to coins[i]. For example
dp[1][2] will store if we had coins[0] and coins[1], what is the minimum number of coins we can
use to make 2. Let's begin:

At first, for the 0th column, can make 0 by not taking any coins at all. So all the values of 0th
column will be 0. For dp[0][1], we are asking ourselves if we had only 1 denomination of coin, that
is coins[0] = 1, what is the minimum number of coins needed to get 1? The answer is 1. For
dp[0][2], if we had only 1, what is the minimum number of coins needed to get 2. The answer is 2.
Similarly dp[0][3] = 3, dp[0][4] = 4 and so on. One thing to mention here is that, if we didn't have
a coin of denomination 1, there might be some cases where the total can't be achieved using 1
coin only. For simplicity we take 1 in our example. After first iteration our dp array will look like:

 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (denom)| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (1) | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (5) | 1 | 0 | | | | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (6) | 2 | 0 | | | | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (8) | 3 | 0 | | | | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+

Moving on, for dp[1][1], we are asking ourselves if we had coins[0] = 1 and coins[1] = 5, what is
the minimum number of coins needed to get 1? Since coins[1] is greater than our current total, it
will not affect our calculation. We'll need to exclude coins[5] and get 1 using coins[0] only. This
value is stored in dp[0][1]. So we take the value from the top. Our first formula is:

if coins[i] > j
 dp[i][j] := dp[i-1][j]

This condition will be true until our total is 5 in dp[1][5], for that case, we can make 5 in two ways:

We take 5 denominations of coins[0], which is stored on dp[0][5] (from the top).•
We take 1 denomination of coins[1] and (5 - 5) = 0 denominations of coins[0].•

We'll choose the minimum of these two. So dp[1][5] = min(dp[0][5], 1 + dp[1][0]) = 1. Why did we
mention 0 denominations of coins[0] here will be apparent in our next position.

For dp[1][6], we can make 6 in two ways:

https://riptutorial.com/ 13

We take 6 denominations of coins[0], which is stored on the top.•
We can take 1 denomination of 5, we'll need 6 - 5 = 1 to get the total. The minimum number
of ways to get 1 using the coins of denomination 1 and 5 is stored in dp[1][1], which can be
written as dp[i][j-coins[i]], where i = 1. This is why we wrote the previous value in that
fashion.

•

We'll take the minimum of these two ways. So our second formula will be:

if coins[i] >= j
 dp[i][j] := min(dp[i-1][j], dp[i][j-coins[i]])

Using these two formulae we can fill up the whole table. Our final result will be:

 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (denom)| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (1) | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (5) | 1 | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 2 | 3 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (6) | 2 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | 4 | 2 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+
 (8) | 3 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 2 | 1 | 2 | 2 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+

Our required result will be stored at dp[3][11]. The procedure will be:

Procedure coinChange(coins, total):
n := coins.length
dp[n][total + 1]
for i from 0 to n
 dp[i][0] := 0
end for
for i from 1 to (total + 1)
 dp[0][i] := i
end for
for i from 1 to n
 for j from 1 to (total + 1)
 if coins[i] > j
 dp[i][j] := dp[i-1][j]
 else
 dp[i][j] := min(dp[i-1][j], dp[i][j-coins[i]])
 end if
 end for
end for
Return dp[n-1][total]

The runtime complexity of this algorithm is: O(n*total) where n is the number of denominations of
coins.

To print the coins needed, we need to check:

if the value came from top, then the current coin is not included.•
if the value came from left, then the current coin is included.•

https://riptutorial.com/ 14

The algorithm would be:

Procedure printChange(coins, dp, total):
i := coins.length - 1
j := total
min := dp[i][j]
while j is not equal to 0
 if dp[i-1][j] is equal to min
 i := i - 1
 else
 Print(coins[i])
 j := j - coins[i]
 end if
end while

For our example, the direction will be:

The values will be 6, 5.

Read Coin Changing Problem online: https://riptutorial.com/dynamic-
programming/topic/8013/coin-changing-problem

https://riptutorial.com/ 15

https://i.stack.imgur.com/hFZil.jpg
https://riptutorial.com/dynamic-programming/topic/8013/coin-changing-problem
https://riptutorial.com/dynamic-programming/topic/8013/coin-changing-problem

Chapter 3: Dynamic Time Warping

Examples

Introduction To Dynamic Time Warping

Dynamic Time Warping(DTW) is an algorithm for measuring similarity between two temporal
sequences which may vary in speed. For instance, similarities in walking could be detected using
DTW, even if one person was walking faster than the other, or if there were accelerations and
decelerations during the course of an observation. It can be used to match a sample voice
command with others command, even if the person talks faster or slower than the prerecorded
sample voice. DTW can be applied to temporal sequences of video, audio and graphics data-
indeed, any data which can be turned into a linear sequence can be analyzed with DTW.

In general, DTW is a method that calculates an optimal match between two given sequences with
certain restrictions. But let's stick to the simpler points here. Let's say, we have two voice
sequences Sample and Test, and we want to check if these two sequences match or not. Here
voice sequence refers to the converted digital signal of your voice. It might be the amplitude or
frequency of your voice that denotes the words you say. Let's assume:

Sample = {1, 2, 3, 5, 5, 5, 6}
Test = {1, 1, 2, 2, 3, 5}

We want to find out the optimal match between these two sequences.

At first, we define the distance between two points, d(x, y) where x and y represent the two points.
Let,

d(x, y) = |x - y| //absolute difference

Let's create a 2D matrix Table using these two sequences. We'll calculate the distances between
each point of Sample with every points of Test and find the optimal match between them.

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 1 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 2 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 3 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |

https://riptutorial.com/ 16

https://en.wikipedia.org/wiki/Dynamic_time_warping

+------+------+------+------+------+------+------+------+
| 6 | | | | | | | |
+------+------+------+------+------+------+------+------+

Here, Table[i][j] represents the optimal distance between two sequences if we consider the
sequence up to Sample[i] and Test[j], considering all the optimal distances we observed before.

For the first row, if we take no values from Sample, the distance between this and Test will be
infinity. So we put infinity on the first row. Same goes for the first column. If we take no values from
Test, the distance between this one and Sample will also be infinity. And the distance between 0
and 0 will simply be 0. We get,

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | 0 | inf | inf | inf | inf | inf | inf |
+------+------+------+------+------+------+------+------+
| 1 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 2 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 3 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 6 | inf | | | | | | |
+------+------+------+------+------+------+------+------+

Now for each step, we'll consider the distance between each points in concern and add it with the
minimum distance we found so far. This will give us the optimal distance of two sequences up to
that position. Our formula will be,

Table[i][j] := d(i, j) + min(Table[i-1][j], Table[i-1][j-1], Table[i][j-1])

For the first one, d(1, 1) = 0, Table[0][0] represents the minimum. So the value of Table[1][1] will
be 0 + 0 = 0. For the second one, d(1, 2) = 0. Table[1][1] represents the minimum. The value will
be: Table[1][2] = 0 + 0 = 0. If we continue this way, after finishing, the table will look like:

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | 0 | inf | inf | inf | inf | inf | inf |
+------+------+------+------+------+------+------+------+
| 1 | inf | 0 | 0 | 1 | 2 | 4 | 8 |
+------+------+------+------+------+------+------+------+
| 2 | inf | 1 | 1 | 0 | 0 | 1 | 4 |
+------+------+------+------+------+------+------+------+
| 3 | inf | 3 | 3 | 1 | 1 | 0 | 2 |
+------+------+------+------+------+------+------+------+
| 5 | inf | 7 | 7 | 4 | 4 | 2 | 0 |

https://riptutorial.com/ 17

+------+------+------+------+------+------+------+------+
| 5 | inf | 11 | 11 | 7 | 7 | 4 | 0 |
+------+------+------+------+------+------+------+------+
| 5 | inf | 15 | 15 | 10 | 10 | 6 | 0 |
+------+------+------+------+------+------+------+------+
| 6 | inf | 20 | 20 | 14 | 14 | 9 | 1 |
+------+------+------+------+------+------+------+------+

The value at Table[7][6] represents the maximum distance between these two given sequences.
Here 1 represents the maximum distance between Sample and Test is 1.

Now if we backtrack from the last point, all the way back towards the starting (0, 0) point, we get a
long line that moves horizontally, vertically and diagonally. Our backtracking procedure will be:

if Table[i-1][j-1] <= Table[i-1][j] and Table[i-1][j-1] <= Table[i][j-1]
 i := i - 1
 j := j - 1
else if Table[i-1][j] <= Table[i-1][j-1] and Table[i-1][j] <= Table[i][j-1]
 i := i - 1
else
 j := j - 1
end if

We'll continue this till we reach (0, 0). Each move has its own meaning:

A horizontal move represents deletion. That means our Test sequence accelerated during
this interval.

•

A vertical move represents insertion. That means out Test sequence decelerated during this
interval.

•

A diagonal move represents match. During this period Test and Sample were same. •

Our pseudo-code will be:

https://riptutorial.com/ 18

https://i.stack.imgur.com/2Bfjj.jpg

Procedure DTW(Sample, Test):
n := Sample.length
m := Test.length
Create Table[n + 1][m + 1]
for i from 1 to n
 Table[i][0] := infinity
end for
for i from 1 to m
 Table[0][i] := infinity
end for
Table[0][0] := 0
for i from 1 to n
 for j from 1 to m
 Table[i][j] := d(Sample[i], Test[j])
 + minimum(Table[i-1][j-1], //match
 Table[i][j-1], //insertion
 Table[i-1][j]) //deletion
 end for
end for
Return Table[n + 1][m + 1]

We can also add a locality constraint. That is, we require that if Sample[i] is matched with Test[j],
then |i - j| is no larger than w, a window parameter.

Complexity:

The complexity of computing DTW is O(m * n) where m and n represent the length of each
sequence. Faster techniques for computing DTW include PrunedDTW, SparseDTW and
FastDTW.

Applications:

Spoken word recognition•
Correlation Power Analysis•

Read Dynamic Time Warping online: https://riptutorial.com/dynamic-
programming/topic/7967/dynamic-time-warping

https://riptutorial.com/ 19

https://riptutorial.com/dynamic-programming/topic/7967/dynamic-time-warping
https://riptutorial.com/dynamic-programming/topic/7967/dynamic-time-warping

Chapter 4: Knapsack Problem

Remarks

The knapsack problem or rucksack problem is a problem in combinatorial optimization. Given a
set of items, each with a weight and a value, determine the number of each item to include in a
collection so that the total weight is less than or equal to a given limit and the total value is as large
as possible. It derives its name from the problem faced by someone who is constrained by fixed-
size knapsack and must fill it with the most valuable items.

The problem often arises in resource allocation where there are financial constraints and is studied
in fields such as combinatorics, computer science, complexity theory, cryptography, applied
mathematics and daily fantasy sports.

The knapsack problem has been studied for more than a century, with early works dating as far
back as 1897. The name "knapsack problem" dates back to the early works of mathematician
Tobias Dantzig (1884-1956) and refers to the commonplace problem of packing your mosty
valuable or useful items without overloading your luggage.

Examples

0-1 Knapsack Problem

Suppose you are asked, given the total weight you can carry on your knapsack and some items
with their weight and values, how can you take those items in such a way that the sum of their
values are maximum, but the sum of their weights don't exceed the total weight you can carry?
The 0-1 indicates either you pick the item or you don't. Also we have one quantity of each item. It
means that, you can't split the item. If it was not a 0-1 knapsack problem, that means if you could
have split the items, there's a greedy solution to it, which is called fractional knapsack problem.

Let's, for now, concentrate on our problem at hand. For example, let's say we have a knapsack
capacity of 7. We have 4 items. Their weights and values are:

+----------+---+---+---+---+
| Item | 1 | 2 | 3 | 4 |
+----------+---+---+---+---+
| Weight | 1 | 3 | 4 | 5 |
+----------+---+---+---+---+
| Value | 1 | 4 | 5 | 7 |
+----------+---+---+---+---+

One brute force method would be taking all possible combinations of items. Then we can calculate
their total weights and exclude them which exceed our knapsack's capacity and find out the one
that gives us maximum value. For 4 items, we'll need to check (4! - 1) = 23 possible combinations
(excluding one with no items). This is quite cumbersome when the number of items increase.
Here, a few aspects we can notice, that is:

https://riptutorial.com/ 20

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Daily_fantasy_sports
https://en.wikipedia.org/wiki/Tobias_Dantzig

We can take lesser items and calculate the maximum value we can get using those items
and combine them. So our problem can be divided into subproblems.

•

If we calculate the combinations for item {1,2}, we can use it when we calculate {1, 2, 3}.•
If we minimize the weight and maximize the value, we can find out our optimal solution.•

For these reasons, we'll use dynamic programming to solve our problem. Our strategy will be:
whenever a new item comes, we'll check if we can pick the item or not and again we'll pick the
items that give us maximum value. Now if we pick the item, our value will be the value of the item,
plus whatever the value we can get by subtracting the value from our capacity and the maximum
we can get for that remaining weight. If we don't pick the item, we'll pick the items that gives us
maximum value without including the item. Let's try to understand it with our example:

We'll take a 2D array table, where the number of columns will be the maximum value we can get
by taking the items + 1. And the number of rows will be same as the number of items. Our array
will look like:

+-------+--------+---+---+---+---+---+---+---+---+
| Value | Weight | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-------+--------+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+
| 4 | 3 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+
| 5 | 4 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+
| 7 | 5 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+

We've incorporate the weight and value of each item to the array for our convenience. Remember
these are not part of the array, these are for calculation purpose only, you need not store these
values in table array.

Our first column is filled with 0. It means if our maximum capacity is 0, no matter whatever item we
have, since we can't pick any items, our maximum value will be 0. Let's start from Table[0][1].
When we are filling Table[1][1], we are asking ourselves if our maximum capacity was 1 and we
had only the first item, what would be our maximum value? The best we can do is 1, by picking the
item. For Table[0][2] that means if our maximum capacity is 2 and we only have the first item, the
maximum value we can get is 1. This will be same for Table[0][3], Table[0][4], Table[0][5],
Table[0][6] and Table[0][7]. This is because we only have one item, which gives us value 1.
Since we have only 1 quantity of each item, no matter how we increase the capacity of our
knapsack, from one item, 1 is the best value we can make. So our array will look like:

+-------+--------+---+---+---+---+---+---+---+---+
| Value | Weight | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-------+--------+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
+-------+--------+---+---+---+---+---+---+---+---+
| 4 | 3 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+
| 5 | 4 | 0 | | | | | | | |
+-------+--------+---+---+---+---+---+---+---+---+
| 7 | 5 | 0 | | | | | | | |

https://riptutorial.com/ 21

+-------+--------+---+---+---+---+---+---+---+---+

Moving on, for Table[1][1], we are asking ourselves, if we had item 1 and 2 and if the maximum
capacity of our knapsack was 1, what is the maximum value we can get? If we take both item 1
and 2, the total weight will be 4, which will exceed our current knapsack capacity. So item 2 can't
be selected. Now what is the best we can do without taking item 2? The value from the top, that is
Table[0][1] which contains the maximum value we can get if we had maximum capacity 1 and we
didn't pick the second item. For Table[1][2], since 2 is less than weight[2], that is the weight of
the second item, we can't take the item. So we can establish that, if the weight of the current item
is greater than our maximum capacity, we can't take that item. In this case, we'll simply take the
value from top, which represents the maximum value we can take excluding the item.

if weight[i] > j
 Table[i][j] := Table[i-1][j]
end if

Now for Table[1][3] since our maximum capacity is equal to our current weight, we have two
choices.

We pick the item and add its value with the maximum value we can get from other remaining
items after taking this item.

•

We can exclude this item.•

Among the two choices, we'll pick the one from which we can get maximum value. If we select the
item, we get: value for this item + maximum value from rest of the items after taking this item = 4 +
0 = 4. We get 4(value of the item) from our weight array and the 0(maximum value we can get
from rest of the items after taking this item) comes by going 1 step above and 3 steps back. That
is Table[0][0]. Why? If we take the item, our remaining capacity will be 3 - 3 = 0 and remaining
item will be the first item. Well, if you recall Table[0][0] stores the maximum value we can get if
our capacity was 0 and we only had the first item. Now if we don't select the item, the maximum
value we can get is comes from 1 step above, that is 1. Now we take the maximum of these two
values(4, 1) and set Table[1][2] = 4. For Table[1][4], since 4, the maximum knapsack capacity is
greater than 3, the weight of our current item, we again have two options. We take max(Weight[2]
+ Table[0][4-Weight[2]], Table[0][4]) = max(Weight[2] + Table[0][1], Table[0][4]) = max(4 + 1, 1
) = 5.

if weight[i] <= j
 w := weight[i]
 Table[i][j] := max(w + Table[i][j-w], Table[i-1][j])
end if

Using these two formulae, we can populate the whole Table array. Our array will look like:

+-------+--------+---+---+---+---+---+---+---+---+
| Value | Weight | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-------+--------+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
+-------+--------+---+---+---+---+---+---+---+---+
| 4 | 3 | 0 | 1 | 1 | 4 | 5 | 5 | 5 | 5 |

https://riptutorial.com/ 22

+-------+--------+---+---+---+---+---+---+---+---+
| 5 | 4 | 0 | 1 | 1 | 4 | 5 | 6 | 6 | 9 |
+-------+--------+---+---+---+---+---+---+---+---+
| 7 | 5 | 0 | 1 | 1 | 4 | 5 | 7 | 8 | 9 |
+-------+--------+---+---+---+---+---+---+---+---+

Here, The last value that we inserted in our array, Table[3][7] contains our required maximum
value. This is the maximum value we can get if we had 4 items and our maximum capacity of the
knapsack was 7.

Here one thing we must remember that, even for the first row, the weight can be greater than the
capacity of the knapsack. We'll need to keep another constraint to check the value while filling the
first row. Or we can simply take another row and set all the values of the first row to 0. The
pseudo-code would look like:

Procedure Knapsack(Weight, Value, maxCapacity):
n := Item.size - 1
Table[n+1][maxCapacity+1]
for i from 0 to n
 Table[i][0] := 0
end for
for j from 1 to maxCapacity
 if j >= Weight[0]
 Table[0][j] := Weight[0]
 else
 Table[0][j] := 0
 end if
end for
for i from 1 to n
 for j from 1 to maxCapacity
 if Weight[i] >= j //can't pick the item
 Table[i][j] := Table[i-1][j]
 else //can pick the item
 w := Weight[i]
 Table[i][j] := max(w + Table[i-1][j-w], Table[i-1][j])
 end if
 end for
end for
Return Table[n][maxCapacity]

The time complexity of this algorithm is O(n*maxCapacity), where n is the number of items and
maxCapacity is the maximum capacity of our knapsack.

So far, we've found the maximum value we can get from our example. One question still remains.
What are the actual items? We'll retrace the values in our Table array to find out the items we've
taken. We'll follow two strategies:

For any item, if the value is coming from the position above, we didn't take the current item.
We go 1 step above.

•

If the value is not coming from the position above, we took the item. So we go 1 step above
and x steps back where x is the weight of the current item.

•

The pseudo-code will be:

https://riptutorial.com/ 23

Procedure printItems(Table, maxCapacity, Value):
i := Item.size - 1
j := maxCapacity
while j is not equal to 0
 if Table[i][j] is equal to Table[i-1][j]
 i := i - 1
 else
 Print: i
 j := j - weight[i]
 i := i - 1
 end if
end while

If we retrace our example, we'll get:

From this, we can say that, we can take item 2 and 3 to get the maximum value.

Read Knapsack Problem online: https://riptutorial.com/dynamic-
programming/topic/7972/knapsack-problem

https://riptutorial.com/ 24

https://i.stack.imgur.com/UrImV.jpg
https://riptutorial.com/dynamic-programming/topic/7972/knapsack-problem
https://riptutorial.com/dynamic-programming/topic/7972/knapsack-problem

Chapter 5: Matrix Chain Multiplication

Examples

Recursive Solution

Matrix chain multiplication is an optimization problem that can be solved using dynamic
programming. Given a sequence of matrices, the goal is to find the most efficient way to multiply
these matrices. The problem is not actually to perform the multiplications, but merely to decide the
sequence of the matrix multiplications involved.

Let's say we have two matrices A1 and A2 of dimension m * n and p * q. From the rules of matrix
multiplication, we know that,

We can multiply A1 and A2 if and only if n = p. That means the number of columns of A1
must be equal to the number of rows of A2.

1.

If the first condition is satisfied and we do multiply A1 and A2, we'll get a new matrix, let's call
it A3 of dimension m * q.

2.

To multiply A1 and A2, we need to do some scaler multiplications. The total number of scaler
multiplications, we need to perform is (m * n * q) or (m * p * q).

3.

A1 * A2 is not equal to A2 * A1.4.

If we have three matrices A1, A2 and A3 having dimension m * n, n * p and p * q respectively,
then A4 = A1 * A2 * A3 will have dimension of m * q. Now we can perform this matrix multiplication
in two ways:

First we multiply A1 and A2, then with the result we multiply A3. That is: (A1 * A2) * A3.•
First we multiply A2 and A3, then with the result we multiply A1. That is: A1 * (A2 * A3).•

You can notice the order of the multiplication remains the same, i.e. we don't multiply (A1 * A3) * A

2 because it might not be valid. We only change the parenthesis to multiply a set before
multiplying it with the remaining. How we place these parenthesis are important. Why? Let's say,
the dimension of 3 matrices A1, A2 and A3 are 10 * 100, 100 * 5, 5 * 50. Then,

For (A1 * A2) * A3, the total number of scaler multiplications are: (10 * 100 * 5) + (10 * 5 * 50)
= 7500 times.

1.

For A1 * (A2 * A3), the total number of scaler multiplications are: (100 * 5 * 50) + (10 * 100 *
50) = 75000 times.

2.

For the 2nd type the number of scaler multiplication is 10 times the number of 1st type! So if you
can devise a way to find out the correct orientation of parenthesis needed to minimize the total
scaler multiplication, it would reduce both time and memory needed for matrix multiplication. This
is where matrix chain multiplication comes in handy. Here, we'll not be concerned with the actual
multiplication of matrices, we'll only find out the correct parenthesis order so that the number of
scaler multiplication is minimized. We'll have matrices A1, A2, A3 An and we'll find out the
the minimum number of scaler multiplications needed to multiply these. We'll assume that the

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/Matrix_chain_multiplication

given dimensions are valid, i.e. it satisfies our first requirement for matrix multiplication.

We'll use divide-and-conquer method to solve this problem. Dynamic programming is needed
because of common subproblems. For example: for n = 5, we have 5 matrices A1, A2, A3, A4 and
A5. We want to find out the minimum number of multiplication needed to perform this matrix
multiplication A1 * A2 * A3 * A4 * A5. Of the many ways, let's concentrate on one: (A1 * A2) * (A3 *
A4 * A5).

For this one, we'll find out Aleft = A1 * A2. Aright = A3 * A4 * A5. Then we'll find out Aanswer = Aleft
* Aright. The total number of scaler multiplications needed to find out Aanswer: = The total number
of scaler multiplications needed to determine Aleft + The total number of scaler multiplications
needed to determine Aright + The total number of scaler multiplications needed to determine Aleft
* Aright.

The last term, The total number of scaler multiplications needed to determine Aleft * Aright can be
written as: The number of rows in Aleft * the number of columns in Aleft * the number of columns
in Aright. (According to the 2nd rule of matrix multiplication)

But we could set the parenthesis in other ways too. For example:

A1 * (A2 * A3 * A4 * A5)•
(A1 * A2 * A3) * (A4 * A5)•
(A1 * A2 * A3 * A4) * A5 etc.•

For each and every possible cases, we'll determine the number of scaler multiplication needed to
find out Aleft and Aright, then for Aleft * Aright. If you have a general idea about recursion, you've
already understood how to perform this task. Our algorithm will be:

- Set parenthesis in all possible ways.
- Recursively solve for the smaller parts.
- Find out the total number of scaler multiplication by merging left and right.
- Of all possible ways, choose the best one.

Why this is dynamic programming problem? To determine (A1 * A2 * A3), if you've already
calculated (A1 * A2), it'll be helpful in this case.

To determine the state of this recursion, we can see that to solve for each case, we'll need to
know the range of matrices we're working with. So we'll need a begin and end. As we're using
divide and conquer, our base case will be having less than 2 matrices (begin >= end), where we
don't need to multiply at all. We'll have 2 arrays: row and column. row[i] and column[i] will store
the number of rows and columns for matrix Ai. We'll have a dp[n][n] array to store the already
calculated values and initialize it with -1, where -1 represents the value has not been calculated
yet. dp[i][j] represents the number of scaler multiplications needed to multiply Ai, Ai+1,,Aj
inclusive. The pseudo-code will look like:

Procedure matrixChain(begin, end):
if begin >= end
 Return 0
else if dp[begin][end] is not equal to -1
 Return dp[begin][end]

https://riptutorial.com/ 26

end if
answer := infinity
for mid from begin to end
 operation_for_left := matrixChain(begin, mid)
 operation_for_right := matrixChain(mid+1, right)
 operation_for_left_and_right := row[begin] * column[mid] * column[end]
 total := operation_for_left + operation_for_right + operation_for_left_and_right
 answer := min(total, answer)
end for
dp[begin][end] := answer
Return dp[begin][end]

Complexity:

The value of begin and end can range from 1 to n. There are n2 different states. For each states,
the loop inside will run n times. Total time complexity: O(n³) and memory complexity: O(n²).

Read Matrix Chain Multiplication online: https://riptutorial.com/dynamic-
programming/topic/7996/matrix-chain-multiplication

https://riptutorial.com/ 27

https://riptutorial.com/dynamic-programming/topic/7996/matrix-chain-multiplication
https://riptutorial.com/dynamic-programming/topic/7996/matrix-chain-multiplication

Chapter 6: Rod Cutting

Examples

Cutting the Rod to get the maximum profit

Given a rod of length n inches and an array of length m of prices that contains prices of all pieces
of size smaller than n. We have to find the maximum value obtainable by cutting up the rod and
selling the pieces. For example, if length of the rod is 8 and the values of different pieces are given
as following, then the maximum obtainable value is 22.

 +---+---+---+---+---+---+---+---+
 (price)| 1 | 5 | 8 | 9 | 10| 17| 17| 20|
 +---+---+---+---+---+---+---+---+

We'll use a 2D array dp[m][n + 1] where n is the length of the rod and m is the length of the price
array. For our example, we'll need dp[8][9]. Here dp[i][j] will denote the maximum price by selling
the rod of length j.We can have the maximum value of length j as a whole or we could have
broken the length to maximize the profit.

At first, for the 0th column, it will not contribute anything hence marking all the values as 0. So all
the values of 0th column will be 0. For dp[0][1], what is the maximum value we can get by selling
rod of length 1.It will be 1.Similarly for rod of length 2 dp[0][2] we can have 2(1+1).This continues
till dp[0][8].So after the first iteration our dp[] array will look like.

 +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 +---+---+---+---+---+---+---+---+---+
 (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
 +---+---+---+---+---+---+---+---+---+
 (5) 2 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (8) 3 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (9) 4 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+

For dp[2][2] we hae to ask ourselves that what is the best I can get if I break the rod in two
pieces(1,1) or taking the rod as a whole(length=2).We can see that if I break the rod in two pieces
the maximum profit I can make is 2 and if if I have the rod as a whole I can sell it for 5.After
second iteration the dp[] array will look like:

https://riptutorial.com/ 28

 +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 +---+---+---+---+---+---+---+---+---+
 (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
 +---+---+---+---+---+---+---+---+---+
 (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
 +---+---+---+---+---+---+---+---+---+
 (8) 3 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (9) 4 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 | | | | | | | | |
 +---+---+---+---+---+---+---+---+---+

So to calculate dp[i][j] our formula will look like:

if j>=i
 dp[i][j] = Max(dp[i-1][j], price[i]+arr[i][j-i]);
else
 dp[i][j] = dp[i-1][j];

After the last iteration our dp[] array will look like

 +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 +---+---+---+---+---+---+---+---+---+
 (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
 +---+---+---+---+---+---+---+---+---+
 (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
 +---+---+---+---+---+---+---+---+---+
 (8) 3 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
 +---+---+---+---+---+---+---+---+---+
 (9) 4 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
 +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
 +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
 +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
 +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
 +---+---+---+---+---+---+---+---+---+

We will have the result at dp[n][m+1].

Implementation in Java

public int getMaximumPrice(int price[],int n){
 int arr[][] = new int[n][price.length+1];

 for(int i=0;i<n;i++){

https://riptutorial.com/ 29

 for(int j=0;j<price.length+1;j++){
 if(j==0 || i==0)
 arr[i][j] = 0;
 else if(j>=i){
 arr[i][j] = Math.max(arr[i-1][j], price[i-1]+arr[i][j-i]);
 }else{
 arr[i][j] = arr[i-1][j];
 }
 }
 }
 return arr[n-1][price.length];
 }

Time Complexity

O(n^2)

Read Rod Cutting online: https://riptutorial.com/dynamic-programming/topic/10486/rod-cutting

https://riptutorial.com/ 30

https://riptutorial.com/dynamic-programming/topic/10486/rod-cutting

Chapter 7: Solving Graph Problems Using
Dynamic Programming

Examples

Floyd-Warshall Algorithm

Floyd-Warshall's algorithm is for finding shortest paths in a weighted graph with positive or
negative edge weights. A single execution of the algorithm will find the lengths (summed weights)
of the shortest paths between all pair of vertices. With a little variation, it can print the shortest path
and can detect negative cycles in a graph. Floyd-Warshall is a Dynamic-Programming algorithm.

Let's look at an example. We're going to apply Floyd-Warshall's algorithm on this graph:

First thing we do is, we take two 2D matrices. These are adjacency matrices. The size of the
matrices is going to be the total number of vertices. For our graph, we will take 4 * 4 matrices. The
Distance Matrix is going to store the minimum distance found so far between two vertices. At first,
for the edges, if there is an edge between u-v and the distance/weight is w, we'll store:
distance[u][v] = w. For all the edges that doesn't exist, we're gonna put infinity. The Path Matrix is
for regenerating minimum distance path between two vertices. So initially, if there is a path
between u and v, we're going to put path[u][v] = u. This means the best way to come to vertex-v
from vertex-u is to use the edge that connects v with u. If there is no path between two vertices,
we're going to put N there indicating there is no path available now. The two tables for our graph
will look like:

+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 | | | 1 | 2 | 3 | 4 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 1 | 0 | 3 | 6 | 15 | | 1 | N | 1 | 1 | 1 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 2 | inf | 0 | -2 | inf | | 2 | N | N | 2 | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 3 | inf | inf | 0 | 2 | | 3 | N | N | N | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+

https://riptutorial.com/ 31

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://i.stack.imgur.com/heaAS.png
http://www.riptutorial.com/algorithm/example/23963/storing-graphs--adjacency-matrix-

| 4 | 1 | inf | inf | 0 | | 4 | 4 | N | N | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
 distance path

Since there is no loop, the diagonals are set N. And the distance from the vertex itself is 0.

To apply Floyd-Warshall algorithm, we're going to select a middle vertex k. Then for each vertex i,
we're going to check if we can go from i to k and then k to j, where j is another vertex and
minimize the cost of going from i to j. If the current distance[i][j] is greater than distance[i][k] +
distance[k][j], we're going to put distance[i][j] equals to the summation of those two distances.
And the path[i][j] will be set to path[k][j], as it is better to go from i to k, and then k to j. All the
vertices will be selected as k. We'll have 3 nested loops: for k going from 1 to 4, i going from 1 to 4
and j going from 1 to 4. We're going check:

if distance[i][j] > distance[i][k] + distance[k][j]
 distance[i][j] := distance[i][k] + distance[k][j]
 path[i][j] := path[k][j]
end if

So what we're basically checking is, for every pair of vertices, do we get a shorter distance by
going through another vertex? The total number of operations for our graph will be 4 * 4 * 4 = 64.
That means we're going to do this check 64 times. Let's look at a few of them:

When k = 1, i = 2 and j = 3, distance[i][j] is -2, which is not greater than distance[i][k] +
distance[k][j] = -2 + 0 = -2. So it will remain unchanged. Again, when k = 1, i = 4 and j = 2,
distance[i][j] = infinity, which is greater than distance[i][k] + distance[k][j] = 1 + 3 = 4. So we
put distance[i][j] = 4, and we put path[i][j] = path[k][j] = 1. What this means is, to go from
vertex-4 to vertex-2, the path 4->1->2 is shorter than the existing path. This is how we populate
both matrices. The calculation for each step is shown here. After making necessary changes, our
matrices will look like:

+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 | | | 1 | 2 | 3 | 4 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 1 | 0 | 3 | 1 | 3 | | 1 | N | 1 | 2 | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 2 | 1 | 0 | -2 | 0 | | 2 | 4 | N | 2 | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 3 | 3 | 6 | 0 | 2 | | 3 | 4 | 1 | N | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 4 | 1 | 4 | 2 | 0 | | 4 | 4 | 1 | 2 | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
 distance path

This is our shortest distance matrix. For example, the shortest distance from 1 to 4 is 3 and the
shortest distance between 4 to 3 is 2. Our pseudo-code will be:

Procedure Floyd-Warshall(Graph):
for k from 1 to V // V denotes the number of vertex
 for i from 1 to V
 for j from 1 to V
 if distance[i][j] > distance[i][k] + distance[k][j]

https://riptutorial.com/ 32

https://imgur.com/a/NU6Hg

 distance[i][j] := distance[i][k] + distance[k][j]
 path[i][j] := path[k][j]
 end if
 end for
 end for
end for

Printing the path:

To print the path, we'll check the Path matrix. To print the path from u to v, we'll start from
path[u][v]. We'll set keep changing v = path[u][v] until we find path[u][v] = u and push every
values of path[u][v] in a stack. After finding u, we'll print u and start popping items from the stack
and print them. This works because the path matrix stores the value of the vertex which shares
the shortest path to v from any other node. The pseudo-code will be:

Procedure PrintPath(source, destination):
s = Stack()
S.push(destination)
while Path[source][destination] is not equal to source
 S.push(Path[source][destination])
 destination := Path[source][destination]
end while
print -> source
while S is not empty
 print -> S.pop
end while

Finding Negative Edge Cycle:

To find out if there is a negative edge cycle, we'll need to check the main diagonal of distance
matrix. If any value on the diagonal is negative, that means there is a negative cycle in the graph.

Complexity:

The complexity of Floyd-Warshall algorithm is O(V³) and the space complexity is: O(V²).

Minimum Vertex Cover

Minimum Vertex Cover is a classic graph problem. Let's say, in a city we have a few roads
connecting a few points. Let's represent the roads using edges and the points using nodes. Let's
take two example graphs:

https://riptutorial.com/ 33

https://en.wikipedia.org/wiki/Vertex_cover

We want to set watchmen on some points. A watchman can guard all the roads connected to the
point. The problem is, what is the minimum number of watchmen needed to cover all the roads? If
we set watchmen at node A, B, H, I and J, we can cover all the roads.

This is our optimal solution. We need at least 5 watchmen to guard the whole city. How to
determine this?

At first, we need to understand this is an NP-hard problem, i.e. the problem has no polynomial
time solution. But if the graph was a Tree, that means if it had (n-1) nodes where n is the number
of edges and there are no cycle in the graph, we can solve it using dynamic programming.

https://riptutorial.com/ 34

https://i.stack.imgur.com/7n7bv.jpg
https://i.stack.imgur.com/ADM8O.jpg

To construct a DP solution, we need to follow two strategies:

If there is no watchman in a node, all the nodes connected to it must have a watchman, or all
the roads won't be covered. If u and v are connected and u doesn't have any watchman,
then v must have a watchman.

1.

If there is a watchman in a node, a different node connected to it may or may not have a
watchman. That means it is not necessary to have a watchman, but it can be beneficial. If u
and v are connected and u has a watchman, we'll check and find which on is beneficial for
us by:

Setting watchman in v.•
Not setting watchman in v.•

2.

Let's define a recursive function with state being the current node we're in and whether it has a
watchman or not. Here:

F(u,1) = Currently we're in 'u' node and there is a watchman in this node.
F(u,0) = Currently we're in 'u' node and there is no watchman in this node.

The function will return the number of watchman in remaining nodes.

Let's take an example tree:

We can easily say that if we don't put watchman on node-A, we'll have to put watchmen on node-
B, C and D. We can deduce:

https://riptutorial.com/ 35

https://i.stack.imgur.com/YvGHM.jpg
https://i.stack.imgur.com/rka2p.jpg

F(A,0) = F(B,1) + F(C,1) + F(D,1) + 0

It returns us the number of watchmen needed if we don't put watchman in node-A. We've added 0
at the end because we didn't set any watchman in our current node.

Now F(A,1) means, we set watchman in node-A. For that, we can either set watchmen in all the
connected nodes or we don't. We'll take the one that provides us with minimum number of
watchmen.

F(A,1) = min(F(B,0), F(B,1) + min(F(C,0), F(C,1)) + min(F(D,0), F(D,1)) + 1

We check by setting and not setting watchman on each node and taking the optimal value.

One thing we must be careful that is, once we go to the child node, we'll never look back to the
parent node. From the example above, we went to B from A, so parent[B] = A. So we'll not go
back to A from B.

To determine base case, we can notice that, if from a node, we can't go to any other new node,
we'll return 1 if there is a watchman in our current node, 0 if there is no watchman in our current
node.

It is better to have a adjacency list for our tree. Let the list be denoted by edge. We'll have an
array dp[n][2], where n denotes the number of nodes to store the calculated values and initialize it
with -1. We'll also have a parent[n] array to denote the parent and child relation between nodes.
Our pseudo-code will look like:

Procedure f(u, isGuarded):
if edge[u].size is equal to 0 //node doesn't have any new edge
 Return isGuarded
else if dp[u][isGuarded] is not equal to -1 //already calculated
 Return dp[u][isGuarded]
end if
sum := 0
for i from i to edge[u].size
 v := edge[u][i]
 if v is not equal to parent[u] //not a parent
 parent[v] := u
 if isGuarded equals to 0 //not guarded, must set a watchman
 sum := sum + f(v,1)
 else //guarded, check both
 sum := sum + min(f(v,1), f(v,0)
 end if
 end if
end for
dp[u][isGuarded] := sum + isGuarded
Return dp[u][isGuarded]

If we denote node-A as root, we'll call the function by: min(f(A,1), f(A,0)). That means we'll also
check if it is optimal to set watchman in the root node or not. This is our DP solution. This problem
can also be solved using maximum matching algorithm or max-flow.

Read Solving Graph Problems Using Dynamic Programming online:

https://riptutorial.com/ 36

https://riptutorial.com/dynamic-programming/topic/7979/solving-graph-problems-using-dynamic-
programming

https://riptutorial.com/ 37

https://riptutorial.com/dynamic-programming/topic/7979/solving-graph-problems-using-dynamic-programming
https://riptutorial.com/dynamic-programming/topic/7979/solving-graph-problems-using-dynamic-programming

Chapter 8: Subsequence Related Algorithms

Examples

Longest Common Subsequence

One of the most important implementations of Dynamic Programming is finding out the Longest
Common Subsequence. Let's define some of the basic terminologies first.

Subsequence:

A subsequence is a sequence that can be derived from another sequence by deleting some
elements without changing the order of the remaining elements. Let's say we have a string ABC. If
we erase zero or one or more than one character from this string we get the subsequence of this
string. So the subsequences of string ABC will be {"A", "B", "C", "AB", "AC", "BC", "ABC", " "
}. Even if we remove all the characters, the empty string will also be a subsequence. To find out
the subsequence, for each characters in a string, we have two options - either we take the
character, or we don't. So if the length of the string is n, there are 2n subsequences of that string.

Longest Common Subsequence:

As the name suggest, of all the common subsequencesbetween two strings, the longest common
subsequence(LCS) is the one with the maximum length. For example: The common
subsequences between "HELLOM" and "HMLD" are "H", "HL", "HM" etc. Here "HLL" is the
longest common subsequence which has length 3.

Brute-Force Method:

We can generate all the subsequences of two strings using backtracking. Then we can compare
them to find out the common subsequences. After we'll need to find out the one with the maximum
length. We have already seen that, there are 2n subsequences of a string of length n. It would
take years to solve the problem if our n crosses 20-25.

Dynamic Programming Method:

Let's approach our method with an example. Assume that, we have two strings abcdaf and acbcf.
Let's denote these with s1 and s2. So the longest common subsequence of these two strings will
be "abcf", which has length 4. Again I remind you, subsequences need not be continuous in the
string. To construct "abcf", we ignored "da" in s1 and "c" in s2. How do we find this out using
Dynamic Programming?

We'll start with a table (a 2D array) having all the characters of s1 in a row and all the characters
of s2 in column. Here the table is 0-indexed and we put the characters from 1 to onwards. We'll
traverse the table from left to right for each row. Our table will look like:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+

https://riptutorial.com/ 38

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

 | ch� | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Here each row and column represent the length of the longest common subsequence between
two strings if we take the characters of that row and column and add to the prefix before it. For
example: Table[2][3] represents the length of the longest common subsequence between "ac"
and "abc".

The 0-th column represents the empty subsequence of s1. Similarly the 0-th row represents the
empty subsequence of s2. If we take an empty subsequence of a string and try to match it with
another string, no matter how long the length of the second substring is, the common
subsequence will have 0 length. So we can fill-up the 0-th rows and 0-th columns with 0's. We get:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch� | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Let's begin. When we're filling Table[1][1], we're asking ourselves, if we had a string a and
another string a and nothing else, what will be the longest common subsequence here? The
length of the LCS here will be 1. Now let's look at Table[1][2]. We have string ab and string a. The
length of the LCS will be 1. As you can see, the rest of the values will be also 1 for the first row as
it considers only string a with abcd, abcda, abcdaf. So our table will look like:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch� | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

https://riptutorial.com/ 39

 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

For row 2, which will now include c. For Table[2][1] we have ac on one side and a on the other
side. So the length of the LCS is 1. Where did we get this 1 from? From the top, which denotes the
LCS a between two substrings. So what we are saying is, if s1[2] and s2[1] are not same, then
the length of the LCS will be the maximum of the length of LCS at the top, or at the left. Taking
the length of the LCS at the top denotes that, we don't take the current character from s2.
Similarly, Taking the length of the LCS at the left denotes that, we don't take the current character
from s1 to create the LCS. We get:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch� | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

So our first formula will be:

if s2[i] is not equal to s1[j]
 Table[i][j] = max(Table[i-1][j], Table[i][j-1]
endif

Moving on, for Table[2][2] we have string ab and ac. Since c and b are not same, we put the
maximum of the top or left here. In this case, it's again 1. After that, for Table[2][3] we have string
abc and ac. This time current values of both row and column are same. Now the length of the LCS
will be equal to the maximum length of LCS so far + 1. How do we get the maximum length of LCS
so far? We check the diagonal value, which represents the best match between ab and a. From
this state, for the current values, we added one more character to s1 and s2 which happened to
be the same. So the length of LCS will of course increase. We'll put 1 + 1 = 2 in Table[2][3]. We
get,

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch� | | a | b | c | d | a | f |

https://riptutorial.com/ 40

 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | 1 | 2 | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

So our second formula will be:

if s2[i] equals to s1[j]
 Table[i][j] = Table[i-1][j-1] + 1
endif

We have defined both the cases. Using these two formulas, we can populate the whole table. After
filling up the table, it will look like this:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch� | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | 1 | 2 | 2 | 2 | 2 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | 1 | 2 | 2 | 2 | 2 | 2 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | 1 | 2 | 3 | 3 | 3 | 3 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | 1 | 2 | 3 | 3 | 3 | 4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

The length of the LCS between s1 and s2 will be Table[5][6] = 4. Here, 5 and 6 are the length of
s2 and s1 respectively. Our pseudo-code will be:

Procedure LCSlength(s1, s2):
Table[0][0] = 0
for i from 1 to s1.length
 Table[0][i] = 0
endfor
for i from 1 to s2.length
 Table[i][0] = 0
endfor
for i from 1 to s2.length
 for j from 1 to s1.length
 if s2[i] equals to s1[j]
 Table[i][j] = Table[i-1][j-1] + 1
 else
 Table[i][j] = max(Table[i-1][j], Table[i][j-1])

https://riptutorial.com/ 41

 endif
 endfor
endfor
Return Table[s2.length][s1.length]

The time complexity for this algorithm is: O(mn) where m and n denotes the length of each
strings.

How do we find out the longest common subsequence? We'll start from the bottom-right corner.
We will check from where the value is coming. If the value is coming from the diagonal, that is if
Table[i-1][j-1] is equal to Table[i][j] - 1, we push either s2[i] or s1[j] (both are the same) and
move diagonally. If the value is coming from top, that means, if Table[i-1][j] is equal to Table[i][j],
we move to the top. If the value is coming from left, that means, if Table[i][j-1] is equal to
Table[i][j], we move to the left. When we reach the leftmost or topmost column, our search ends.
Then we pop the values from the stack and print them. The pseudo-code:

Procedure PrintLCS(LCSlength, s1, s2)
temp := LCSlength
S = stack()
i := s2.length
j := s1.length
while i is not equal to 0 and j is not equal to 0
 if Table[i-1][j-1] == Table[i][j] - 1 and s1[j]==s2[i]
 S.push(s1[j]) //or S.push(s2[i])
 i := i - 1
 j := j - 1
 else if Table[i-1][j] == Table[i][j]
 i := i-1
 else
 j := j-1
 endif
endwhile
while S is not empty
 print(S.pop)
endwhile

Point to be noted: if both Table[i-1][j] and Table[i][j-1] is equal to Table[i][j] and Table[i-1][j-1] is
not equal to Table[i][j] - 1, there can be two LCS for that moment. This pseudo-code doesn't
consider this situation. You'll have to solve this recursively to find multiple LCSs.

The time complexity for this algorithm is: O(max(m, n)).

Longest Increasing Subsequence

The task is to find the length of the longest subsequence in a given array of integers such that all
elements of the subsequence are sorted in ascending order. For example, the length of the
longest increasing subsequence(LIS) for {15, 27, 14, 38, 26, 55, 46, 65, 85} is 6 and the longest
increasing subsequence is {15, 27, 38, 55, 65, 85}. Again for {3, 4, -1, 0, 6, 2, 3} length of LIS is 4
and the subsequence is {-1, 0, 2, 3}. We'll use dynamic programming to solve this problem.

Let's take the second example: Item = {3, 4, -1, 0, 6, 2, 3}. We'll start by taking the an array dp
of the same size of our sequence. dp[i] represents the length of the LIS if we include the ith item

https://riptutorial.com/ 42

of our original sequence. At the very beginning we know that for each and every item at least the
longest increasing subsequence is of length 1. That is by considering the single element itself. So
we'll initialize the dp array with 1. We'll have two variables i and j. Initially i will be 1 and j will be 0.
Our array will look like:

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

The number above the array represents the corresponding element of our sequence. Our strategy
will be:

if Item[i] > Item[j]
 dp[i] := dp[j] + 1

That means if element at i is greater than element at j, the length of the LIS that contains element
at j, will increase by length 1 if we include element at i with it. In our example, for i = 1 and j = 0,
Item[i] is greater than Item[j]. So dp[i] = dp[j] + 1. Our array will look like:

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

At each step, we'll increase j up to i and then reset j to 0 and increment i. For now, j has reached i
, so we increment i to 2.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 2, j = 0, Item[i] is not greater than Item[j], so we do nothing and increment j.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

https://riptutorial.com/ 43

For i = 2, j = 1, Item[i] is not greater than Item[j], so we do nothing and since j has reached its
limit, we increment i and reset j to 0.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 3, j = 0, Item[i] is not greater than Item[j], so we do nothing and increment j.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 3, j = 1, Item[i] is not greater than Item[j], so we do nothing and increment j.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 3, j = 2, Item[i] is greater than Item[j], so dp[i] = dp[j] + 1. After that since j has reached
its limit, again we reset j to 0 and increment i.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 4 and j = 0, Item[i] is greater than Item[j], so dp[i] = dp[j] + 1. After that, we increment j.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 2 | 2 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 4 and j = 1, Item[i] is greater than Item[j]. We can also notice that dp[i] = dp[j] + 1 will
provide us 3, which means if we take the LIS for Item[j] and add Item[i] with it, we'll get a better

https://riptutorial.com/ 44

LIS{3,4,6} than before {3,6}. So we set dp[i] = dp[j] + 1. Then we increment j.

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 2 | 3 | 1 | 1 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

For i = 4 and j = 2, Item[i] is greater than Item[j]. But for this case, if we set dp[i] = dp[j] + 1, we'll
get 2, which is{-1,6} not the best{3,4,6} we can do using Item[i]. So we discard this one. We'll add
a condition to our strategy, that is:

if Item[i]>Item[j] and dp[i]<dp[j] + 1
 dp[i] := dp[j] + 1

We increment j by 1. Following this strategy, if we complete our dp array, it will look like:

 3 4 -1 0 6 2 3
+-------+-----+-----+-----+-----+-----+-----+-----+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
+-------+-----+-----+-----+-----+-----+-----+-----+
| Value | 1 | 2 | 1 | 2 | 3 | 3 | 4 |
+-------+-----+-----+-----+-----+-----+-----+-----+
 j i

Now we'll iterate through this array and find out the maximum value, which will be the length of the
LIS. Our pseudo-code will be:

Procedure LISLength(Item):
n := Item.length
dp[] := new Array(n)
for i from 0 to n
 dp[i] := 1
end for
for i from 1 to n
 for j from 0 to i
 if Item[i]>Item[j] and dp[i]<dp[j] + 1
 dp[i] := dp[j] + 1
 end if
 end for
end for
l := -1
for i from 0 to n
 l := max(l, dp[i])
end for
Return l

The time complexity of this algorithm is O(n²) where n is the length of the sequence.

To find out the original sequence, we need to iterate backwards and match it with our length. The
procedure is:

https://riptutorial.com/ 45

Procedure LIS(Item, dp, maxLength):
i := Item.length
while dp[i] is not equal to maxLength
 i := i - 1
end while
s = new Stack()
s.push(Item[i])
maxLength := maxLength - 1
current := Item[i]
while maxLength is not equal to 0
 i := i-1
 if dp[i] := maxLength and Item[i] < current
 current := Item[i]
 s.push(current)
 maxLength := maxLength - 1
 end if
end while
while s is not empty
 x := s.pop
 Print(s)
end while

The time complexity of this algorithm is: O(n).

Longest Palindromic Subsequence

Given a string what is the longest palindromic subsequence(LPS) of it? Let's take a string agbdba.
The LPS of this string is abdba of length 5. Remember, since we're looking for subsequence, the
characters need not to be continuous in the original string. The longest palindromic substring of
the sequence would be bdb of length 3. But we'll concentrate on the subsequence here. We're
going to use dynamic programming to solve this problem.

At first, we'll take a 2D array of the same dimension of our original sequence. For our example: S =
"agbdba", we'll take dp[6][6] array. Here, dp[i][j] represents the length of the LPS we can make if
we consider the characters from s[i] to s[j]. For example. if our string was aa, dp[0][1] would store
2. Now we'll consider different lengths of our string and find out the longest possible length we can
make out of it.

Length = 1:
Here, we are considering only 1 character at a time. So if we had a string of length 1, what is the
LPS we can have? Of course the answer is 1. How to store it? dp[i][j] where i is equal to j
represents a string of length 1. So we'll set dp[0][0], dp[1][1], dp[2][2], dp[3][3], dp[4][4],
dp[5][5] to 1. Our array will look like:

+---+---+---+---+---+---+---+
| | 0 | 1 | 2 | 3 | 4 | 5 |
+---+---+---+---+---+---+---+
| 0 | 1 | | | | | |
+---+---+---+---+---+---+---+
| 1 | | 1 | | | | |
+---+---+---+---+---+---+---+
| 2 | | | 1 | | | |
+---+---+---+---+---+---+---+
| 3 | | | | 1 | | |

https://riptutorial.com/ 46

+---+---+---+---+---+---+---+
| 4 | | | | | 1 | |
+---+---+---+---+---+---+---+
| 5 | | | | | | 1 |
+---+---+---+---+---+---+---+

Length = 2:
This time we'll consider strings of length 2. Now considering strings of length 2, the maximum
length of LPS can be 2 if and only if the two characters of the string is same. So our strategy will
be:

j := i + Length - 1
if s[i] is equal to s[j]
 dp[i][j] := 2
else
 dp[i][j] := 1

If we fill our array following the strategy for Length = 2, we'll get:

+---+---+---+---+---+---+---+
| | 0 | 1 | 2 | 3 | 4 | 5 |
+---+---+---+---+---+---+---+
| 0 | 1 | 1 | | | | |
+---+---+---+---+---+---+---+
| 1 | | 1 | 1 | | | |
+---+---+---+---+---+---+---+
| 2 | | | 1 | 1 | | |
+---+---+---+---+---+---+---+
| 3 | | | | 1 | 1 | |
+---+---+---+---+---+---+---+
| 4 | | | | | 1 | 1 |
+---+---+---+---+---+---+---+
| 5 | | | | | | 1 |
+---+---+---+---+---+---+---+

Length = 3:
Now we're looking at 3 characters at a time for our original string. From now on the LPS we can
make from our string will be determined by:

If the first and last characters match we'll have at least 2 items from which we can make the
LPS + if we exclude the first and last character, what ever the best we can make from the
remaining string.

•

If the first and last characters do not match, the LPS we can make will come from either
excluding the first character or the last character, which we've already calculated.

•

To summerize,

j := i + Length - 1
if s[i] is equal to s[j]
 dp[i][j] := 2 + dp[i+1][j-1]
else
 dp[i][j] := max(dp[i+1][j], dp[i][j-1])
end if

https://riptutorial.com/ 47

If we fill the dp array for Length = 3 to Length = 6, we'll get:

+---+---+---+---+---+---+---+
| | 0 | 1 | 2 | 3 | 4 | 5 |
+---+---+---+---+---+---+---+
| 0 | 1 | 1 | 1 | 1 | 3 | 5 |
+---+---+---+---+---+---+---+
| 1 | | 1 | 1 | 1 | 3 | 3 |
+---+---+---+---+---+---+---+
| 2 | | | 1 | 1 | 3 | 3 |
+---+---+---+---+---+---+---+
| 3 | | | | 1 | 1 | 1 |
+---+---+---+---+---+---+---+
| 4 | | | | | 1 | 1 |
+---+---+---+---+---+---+---+
| 5 | | | | | | 1 |
+---+---+---+---+---+---+---+

This is our required dp array and dp[0][5] will contain the length of the LPS. Our procedure will
look like:

Procedure LPSLength(S):
n := S.length
dp[n][n]
for i from 0 to n
 dp[i][i] := 1
end for
for i from 0 to (n-2)
 if S[i] := S[i+1]
 dp[i][i+1] := 2
 else
 dp[i][i+1] := 1
 end if
end for
Length := 3
while Length <= n
 for i from 0 to (n - Length)
 j := i + Length - 1
 if S[i] is equal to s[j]
 dp[i][j] := 2 + dp[i+1][j-1]
 else
 dp[i][j] := max(dp[i+1][j], dp[i][j-1])
 end if
 end for
Length := Length + 1
end while
Return dp[0][n-1]

The time complexity of this algorithm is O(n²), where n is the length of our given string. Longest
Palindromic Subsequence problem is closely related to Longest Common Subsequence. If we
take the second string as the reverse of the first string and calculate the length and print the result,
that will be the longest palindromic subsequence of the given string. The complexity of that
algorithm is also O(n²).

Read Subsequence Related Algorithms online: https://riptutorial.com/dynamic-
programming/topic/7969/subsequence-related-algorithms

https://riptutorial.com/ 48

https://riptutorial.com/dynamic-programming/topic/7969/subsequence-related-algorithms
https://riptutorial.com/dynamic-programming/topic/7969/subsequence-related-algorithms

Chapter 9: Weighted Activity Selection

Examples

Weighted Job Scheduling Algorithm

Weighted Job Scheduling Algorithm can also be denoted as Weighted Activity Selection Algorithm.

The problem is, given certain jobs with their start time and end time, and a profit you make when
you finish the job, what is the maximum profit you can make given no two jobs can be executed in
parallel?

This one looks like Activity Selection using Greedy Algorithm, but there's an added twist. That is,
instead of maximizing the number of jobs finished, we focus on making the maximum profit. The
number of jobs performed doesn't matter here.

Let's look at an example:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | A | B | C | D | E | F |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (2,5) | (6,7) | (7,9) | (1,3) | (5,8) | (4,6) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 6 | 4 | 2 | 5 | 11 | 5 |
+-------------------------+---------+---------+---------+---------+---------+---------+

The jobs are denoted with a name, their start and finishing time and profit. After a few iterations,
we can find out if we perform Job-A and Job-E, we can get the maximum profit of 17. Now how to
find this out using an algorithm?

The first thing we do is sort the jobs by their finishing time in non-decreasing order. Why do we do
this? It's because if we select a job that takes less time to finish, then we leave the most amount of
time for choosing other jobs. We have:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

We'll have an additional temporary array Acc_Prof of size n (Here, n denotes the total number of
jobs). This will contain the maximum accumulated profit of performing the jobs. Don't get it? Wait
and watch. We'll initialize the values of the array with the profit of each jobs. That means,
Acc_Prof[i] will at first hold the profit of performing i-th job.

+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |

https://riptutorial.com/ 49

+-------------------------+---------+---------+---------+---------+---------+---------+

Now let's denote position 2 with i, and position 1 will be denoted with j. Our strategy will be to
iterate j from 1 to i-1 and after each iteration, we will increment i by 1, until i becomes n+1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

We check if Job[i] and Job[j] overlap, that is, if the finish time of Job[j] is greater than Job[i]'s
start time, then these two jobs can't be done together. However, if they don't overlap, we'll check if
Acc_Prof[j] + Profit[i] > Acc_Prof[i]. If this is the case, we will update Acc_Prof[i] = Acc_Prof[j]
+ Profit[i]. That is:

if Job[j].finish_time <= Job[i].start_time
 if Acc_Prof[j] + Profit[i] > Acc_Prof[i]
 Acc_Prof[i] = Acc_Prof[j] + Profit[i]
 endif
endif

Here Acc_Prof[j] + Profit[i] represents the accumulated profit of doing these two jobs toegther.
Let's check it for our example:

Here Job[j] overlaps with Job[i]. So these to can't be done together. Since our j is equal to i-1, we
increment the value of i to i+1 that is 3. And we make j = 1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Now Job[j] and Job[i] don't overlap. The total amount of profit we can make by picking these two
jobs is: Acc_Prof[j] + Profit[i] = 5 + 5 = 10 which is greater than Acc_Prof[i]. So we update
Acc_Prof[i] = 10. We also increment j by 1. We get,

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+

https://riptutorial.com/ 50

| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Here, Job[j] overlaps with Job[i] and j is also equal to i-1. So we increment i by 1, and make j = 1
. We get,

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Now, Job[j] and Job[i] don't overlap, we get the accumulated profit 5 + 4 = 9, which is greater
than Acc_Prof[i]. We update Acc_Prof[i] = 9 and increment j by 1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 9 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Again Job[j] and Job[i] don't overlap. The accumulated profit is: 6 + 4 = 10, which is greater than
Acc_Prof[i]. We again update Acc_Prof[i] = 10. We increment j by 1. We get:

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 10 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

If we continue this process, after iterating through the whole table using i, our table will finally look

https://riptutorial.com/ 51

like:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 14 | 17 | 8 |
+-------------------------+---------+---------+---------+---------+---------+---------+

* A few steps have been skipped to make the document shorter.

If we iterate through the array Acc_Prof, we can find out the maximum profit to be 17! The
pseudo-code:

Procedure WeightedJobScheduling(Job)
sort Job according to finish time in non-decreasing order
for i -> 2 to n
 for j -> 1 to i-1
 if Job[j].finish_time <= Job[i].start_time
 if Acc_Prof[j] + Profit[i] > Acc_Prof[i]
 Acc_Prof[i] = Acc_Prof[j] + Profit[i]
 endif
 endif
 endfor
endfor

maxProfit = 0
for i -> 1 to n
 if maxProfit < Acc_Prof[i]
 maxProfit = Acc_Prof[i]
return maxProfit

The complexity of populating the Acc_Prof array is O(n2). The array traversal takes O(n). So the
total complexity of this algorithm is O(n2).

Now, If we want to find out which jobs were performed to get the maximum profit, we need to
traverse the array in reverse order and if the Acc_Prof matches the maxProfit, we will push the
name of the job in a stack and subtract Profit of that job from maxProfit. We will do this until our
maxProfit > 0 or we reach the beginning point of the Acc_Prof array. The pseudo-code will look
like:

Procedure FindingPerformedJobs(Job, Acc_Prof, maxProfit):
S = stack()
for i -> n down to 0 and maxProfit > 0
 if maxProfit is equal to Acc_Prof[i]
 S.push(Job[i].name
 maxProfit = maxProfit - Job[i].profit
 endif
endfor

The complexity of this procedure is: O(n).

https://riptutorial.com/ 52

One thing to remember, if there are multiple job schedules that can give us maximum profit, we
can only find one job schedule via this procedure.

Read Weighted Activity Selection online: https://riptutorial.com/dynamic-
programming/topic/7999/weighted-activity-selection

https://riptutorial.com/ 53

https://riptutorial.com/dynamic-programming/topic/7999/weighted-activity-selection
https://riptutorial.com/dynamic-programming/topic/7999/weighted-activity-selection

Credits

S.
No

Chapters Contributors

1
Getting started with
dynamic-
programming

Bakhtiar Hasan, Community

2
Coin Changing
Problem

Bakhtiar Hasan

3
Dynamic Time
Warping

Bakhtiar Hasan

4 Knapsack Problem Bakhtiar Hasan

5
Matrix Chain
Multiplication

Bakhtiar Hasan

6 Rod Cutting metahost, Vishwas

7

Solving Graph
Problems Using
Dynamic
Programming

Bakhtiar Hasan

8
Subsequence
Related Algorithms

Bakhtiar Hasan

9
Weighted Activity
Selection

Bakhtiar Hasan

https://riptutorial.com/ 54

https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/4626943/metahost
https://riptutorial.com/contributor/3870293/vishwas
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/6879340/bakhtiar-hasan

	About
	Chapter 1: Getting started with dynamic-programming
	Remarks
	Examples
	Introduction To Dynamic Programming
	Understanding State in Dynamic Programming
	Constructing a DP Solution

	Chapter 2: Coin Changing Problem
	Examples
	Number of Ways to Get Total
	Minimum Number of Coins to Get Total

	Chapter 3: Dynamic Time Warping
	Examples
	Introduction To Dynamic Time Warping

	Chapter 4: Knapsack Problem
	Remarks
	Examples
	0-1 Knapsack Problem

	Chapter 5: Matrix Chain Multiplication
	Examples
	Recursive Solution

	Chapter 6: Rod Cutting
	Examples
	Cutting the Rod to get the maximum profit

	Chapter 7: Solving Graph Problems Using Dynamic Programming
	Examples
	Floyd-Warshall Algorithm
	Minimum Vertex Cover

	Chapter 8: Subsequence Related Algorithms
	Examples
	Longest Common Subsequence
	Longest Increasing Subsequence
	Longest Palindromic Subsequence

	Chapter 9: Weighted Activity Selection
	Examples
	Weighted Job Scheduling Algorithm

	Credits

